
STARC Compliant Models

Software for Semiconductors

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 1/21

Document History:

Date Name Comment Version

2nd March, 2009 CircuitSutra Created first draft 0.1

Table of Contents
1.Purpose..3
2.Scope...3
3.Timer 8254 ...4

3.1 Block Diagram of Timer...4
3.2 Architectural Diagram of Model: ..5

4.STARC TL Guidelines followed in the model...10
4.1 Separation of Communication and Computation: ..10

4.1.1: Cores: ...10
4.1.2: Wrappers: ...10

4.2 Separate class for TLM APIs:...10
4.3 Abstraction Levels (Data granularity):...11
4.4 Abstraction Levels (Timing):...11
4.5 Concurrent Execution of Communication and Computation:...17
 4.6. Unit Testing:..18

5. Directory Structure:..18
6.How to build and run:...19

6.1 Windows:...19
6.2 Linux:..20

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 2/21

1.Purpose
The purpose of this document is to explain the functionality and the architecture of models developed using the
TLM2 library and STARC guidelines.

2.Scope
This document explains the modeling of the various IPs using STARC TLM guidelines. Following two models are
created as per the STARC TL Guidelines.

•General purpose timer (based on 8254).

You can get the specs of the 8254 from:

www.stanford.edu/class/cs140/projects/pintos/specs/ 8254 .pdf

•Programmable Interrupt controller (based on 8259)

You can get the specs of 8259 from:

www.ee.hacettepe.edu.tr/~alkar/ELE414/ 8259 .pdf

Rest of this document explains the implementation of General purpose timer using TLM2.0 and STARC TL
guidelines.

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 3/21

http://www.stanford.edu/class/cs140/projects/pintos/specs/8254.pdf
http://www.ee.hacettepe.edu.tr/~alkar/ELE414/8259.pdf
http://www.ee.hacettepe.edu.tr/~alkar/ELE414/8259.pdf
http://www.ee.hacettepe.edu.tr/~alkar/ELE414/8259.pdf
http://www.stanford.edu/class/cs140/projects/pintos/specs/8254.pdf
http://www.stanford.edu/class/cs140/projects/pintos/specs/8254.pdf

3.Timer 8254

3.1 Block Diagram of Timer
For the details of functionality please refer to the specification of 8254. Following is the high level block diagram
of the timer 8254.This diagram shows the basic components in the 8254 timer, which includes three counters
and a Control Word.

 Block diagram of timer 8254[Signal level]

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 4/21

Control
Word

DataBus
 Buffer

D7-D0

Read/Write
log ic

 RD!

 WR!

A0

A1

CS!

Counter0

CLK0

GATE0

OUT0

Counter1

CLK1

GATE1

OUT1

Counter2

CLK2

GATE2

OUT2

Figure 3.1

3.2 Architectural Diagram of Model:
 Timer 8254 IP has been modeled using the TLM2 library. It has been modeled using the STARC guidelines and

thus the computation and the communication part of the IP has been separated out as mentioned. The Model
can handle both blocking and non-blocking transport calls. It has taken care of the reusability and
interoperability in the model. Following block diagram gives a brief idea about important blocks of the Timer8254
IP.

 Block diagram of timer 8254[TLM level]

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 5/21

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 6/21

`

TimerWrapper

Event driven

Event
driven

TimerCore

Timer_FWR:
tlm_fw

_transport
_if

(Class bound
with socket)

Blocking
 TLM APIs

Non-blocking
 fwd path TLM
 APIs

PRA

nb_bw_tra ns p
o rt

R.A.

SetClockSetClock

SetGate SetGate

Interrupt
Port
write

Interrupt

Reg isters

Counter0

C.L.

 Event
 driven

Reg isters

Counter0

C.L.

 Event
 driven

Reg isters

Counter0

C.L.

 Event
 driven

tlm_target_socke
t

 Systemc Port Function
call

Process(FSM)

CR/ Other
functions called by
core to signal
across the module

R.A./Other functions
to set the config of
core

RA: Resource Accessor Function PRA: Process for Resource
Accessor

C.L.: Counting
logic

Figure 3.2

Block Diagram of Initiator:
Following section gives a brief idea about the important functional blocks of the Initiator IP, which has been used
for this model. While creating initiator also, STARC guidelines have been followed properly. The implementation
of initiator is specific to the user who is using this timer IP. It may be changed according to the requirement.

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 7/21

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 8/21

tlm_initiator_socket Process(FSM)

 Systemc Port Function
call

C.R

Communication
Requester/Other
function which sends
sig nal across module
always called by core

InitiatorWrapper

InitiatorCore

Main thread
Traffic
Generator/
Configurator/
behavior
vigilator

Interrupt
triggered

Event driven

Gate
Triggering

C.R

FSM Sending
 transaction
ag ain(PEQ)

Event
driven

Initiator_BWR:
tlm_bw_transport

_if

Non blocking
backward
TLM APIs

Figure 3.3

Connections of the timer with the Initiator IP:

Following diagram gives a brief idea about how the timer will be connected to the Initiator IP. The initiator will
basically configure the timer into various modes, generate the read/write requests traffic and observe the
behavior of timer as per configuration. It may generate notify about any error conditions also.

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 9/21

InitiatorWrappe
r

InitiatorCore

TimerWrapper

TimerCore

Interrupt0 Out0

Gate_In0Gate_Out0

Gate_In1Gate_Out1

Interrupt0 Out0

Gate_In2Gate_Out2

Interrupt2 Out2

Figure 3.4

4.STARC TL Guidelines followed in the model

4.1 Separation of Communication and Computation:

As STARC guidelines suggest to separate out the computation and the communication to increase the
reusability of the computation part. The computation is defined in the core and the communication is defined in
the wrapper. Both Wrapper and the core are bind with each other. We have followed the guidelines by the
STARC section 5.3.2 here.

4.1.1: Cores:

STARC explains how to create cores and what essential blocks should we keep in the core in section 5.3.

 In this model, the initiator core does not have any port or TLM socket. It is simply bound with the
wrapper which has systemc ports and the TLM sockets. The main traffic generation part is inside the initiatorcore
and it calls the CR[communication requester] functions defined in the wrapper. Even for writing/reading some
value on the ports defined in the Wrapper, the core calls some port access functions of the wrapper.

 At target side, the TimerCore has been created, which is also bound with the TimerWrapper.
Whenever any Read/Write requests come to the TimerWrapper it calls the RA[Resource Accessor] functions of
the TimerCore. In this model, the TimerCore has instances of Counter, which is the main computation logic. The
RA function of the TimerCore basically access the registers of Counter and perform the required operation. The
Counter starts counting depending upon the values written on the control registers.

4.1.2: Wrappers:

While creating the wrappers for the timer and the initiator, STARC guidelines(section 5.4) have been used.

 InitiatorWrapper instantiates the tlm_initiator_socket and provides the implementation of
tlm_bw_transport_if APIs. InitiatorWrapper contains the CR functions which are called by the core for
executing any transaction. TLM API calls through sockets have been used in the CR functions.

 TimerWrapper instantiates the tlm_target_socket and provides the implementation of
tlm_fw_transport_if APIs. TimerWrapper whenever receives any transport call, it calls the RA functions of the
TimerCore.

4.2 Separate class for TLM APIs:
As recommended in the STARC guidelines, it is better to define the set of TLM APIs into a separate class
instead of implementing them into the Wrapper class. This allows to have multiple set of TLM APIs if there are
multiple sockets. This class is instantiated into the Wrappers.

 On the initiator side, we have created Initiator_BWR class, which is instantiated inside the
initiatorWrapper and bound with the tlm_initiator_socket. This class Initiator_BWR is derived from the
tlm_bw_transport_if interface and provides the definition of backward tlm APIs.

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 10/21

 On the target side, we have Timer_FWD class, which is instantiated inside the TimerWrapper and
bound with the tlm_target_socket. This Timer_FWD is derived from tlm_fw_transport_if and provides the
implementation of fwd tlm APIs.

The TLM protocol is standard and is independent of the functionality of IP. On the target side we have further
seperated the TLM API implementation from the IP. The TLM api implementation is done outside of target
wrapper, and the same implementation is used in both Timer and IP. Similarly a general purpose TLM
implementation can be used on the intiator side also.

4.3 Abstraction Levels (Data granularity):
The model supports both the TR(transaction) level and the BP(Bus Phase) level of data granularity. In the
initiator examples, there is a variable which can be set to indicate which abstraction level (data granularity) is to
be used. In case of TR the initiator uses the use the blocking TLM calls to communicate with the timer IP, in case
of BP non-blocking TLM calls are used. For setting the data granularity, just call this SetAbstraction() with proper
value and it will set the data granularity either to TR/ BP. The number of phases in the BP, depends upon
various latencies.

4.4 Abstraction Levels (Timing):
 This model supports both untimed and the approximate timed models. It basically supports UTTR, ATTR and

ATBP abstraction levels. The timing abstraction is based on the latencies. The user of Timer IP can set three
latencies for the timer, as listed below:

 1) Request Accept Delay: It is the time taken by the target(Timer in this model), to acknowledge the initiator
after it has received the request from the Initiator. Or it may be defined as the interval between the beginning
and the end of the request phase in non-blocking mode of communication.

 2)Read Response Latency: This is the time taken by target IP in processing of the Read request. It is the
interval between the end of request phase and the beginning of the response phase while the request is of
read type.

 3) Write Response Latency: This is the time taken by target IP in processing of the Write request. It is the
interval between the end of request phase and the beginning of the response phase while the request is of
write type.

On the initiator side there can be one latency:

1) Response Accept Delay: It is the time required by the initiator to accept the response form the target. Target
should not send the response of next transaction unless initiator has accepted the response of previous
transaction. It is the interval between the beginning and the end of the response phase.

We have created the model in such a way, that depending on the various combinations of these latencies, it
automatically switch to the appropriate abstraction level.

 If the Data granularity abstraction level is TR, and all the latencies are zero, then it behaves as UTTR. If the
data granularity abstraction level is TR, and some or all of the latencies are non zero then it behaves as ATTR.

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 11/21

In case of data granularity abstraction of BP, the various TLM sequences are realized based on the combination
of latencies. STARC section 6.2 suggests how to introduce various phases at ATBP level. The complete
sequence of a transaction at ATBP level is a follows:

This is the complete sequence of the phases when all the latencies have been defined.but when any of them is
missing, the transaction follows any of the shortcut mentioned in the STARC section 4.1 (page 4-18).

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 12/21

Resp
Latency

Request
Accept
Delay

Resp
Accept
Delay

Initiator Target

BEGIN_REQ

TLM_ACCEPTED

END_REQ

 TLM_ACCEPTED

BEGIN_RESP

TLM_ACCEPTED

 END_RESP

TLM_COMPLETED

 Figure 4 .1

Following table shows the various shortcuts which will be realized in the various conditions of latencies.

Case Request Accept
Delay

Response
Latency

Response Accept Delay ShortCut

Case1 0 0 0 Shortcut 5

Case2 0 0 1 Shortcut 5

Case3 0 1 0 Shortcut4

Case4 0 1 1 Shortcut5

Case5 1 0 0 Shortcut3

Case 6 1 0 1 Shortcut5

Case7 1 1 0 Shortcut4

Case8 1 1 1 Complete Sequence

Note:1 means non-zero value, here it is not representing the exact value of time.

Note: In this examples we have implemented various shortcut sequences just on the basis of latencies
specified by the user. However, there may be several other criteria for choosing a particular sequence
depending on the functionality of IP modeled.

Here are the sequence diagrams showing the forward and backward calls as per the above table:

Case 1:[Request accept delay=0, response latency=0, response accept delay=0]

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 13/21

 Initiator Timer

Beg in_req

Beg in_Resp,
TLM_UPDATED

 t=0

End_Resp

TLM_COMPLETED

t=0

Case 2:[request accept delay=0, response latency=0, response accept delay =1]

Case 3: [request accept delay=0 , response latency=1, response accept delay=0]

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 14/21

 Initiator Timer

End_Resp

TLM_COMPLETED
t= Response accept delay

Beg in_req

Beg in_Resp,
TLM_UPDATED

 t=0

Initiator Timer

Beg in_req

End_req,
TLM_UPDATED

t=0

Beg in_Resp

End_Resp,
TLM_COMPLETED

 t= Response latency

Case 4: [request accept delay=0, response latency=1, response accept delay=1]

Case 5:[request accept delay=1, response latency=0, response accept delay=0]

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 15/21

 Initiator Timer

Beg in_req

End_req,
TLM_UPDATED

t=0

Beg in_Resp

TLM_ACCEPTED

t= response latency

End_Resp

TLM_COMPLETED

t= response accept

delay

Initiator Timer
Beg in_req

TLM_ACCEPTED

t=0

Beg in_Resp

End_Resp,
TLM_COMPLETED

 t= request accept
 delay

Case 6:[request accept delay =1, response latency=0, response accept delay=1]

Case 7:[request accept delay=1, response latency=1, response accept delay=0]

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 16/21

 Initiator Timer
Beg in_req

TLM_ACCEPTED

t=0

Beg in_Resp

TLM_ACCEPTED

t=request accept
delay

End_Resp

TLM_COMPLETED

t= response accept
delay

Initiator Timer
Beg in_req

TLM_ACCEPTED

t=0

End_Req

TLM_ACCEPTED

t=request accept
delay

Beg in_Resp

End_Resp,
TLM_COMPLETED

t=response latency

case 8: [request accept delay=1, response latency=1, response accept delay=1]

4.5 Concurrent Execution of Communication and Computation:
STARC section 6.2.3 discusses the concurrent execution of communication and computation on both
initiator side and target. By concurrency, it means that at initiator it will be achieved by keeping different
processes for sending requests and receiving responses. Similarly at the timer end, the requests should be
accepted in different process and the response should be sent into separate process.

 Initiator:

In current model, on Initiator side, basic TLM handling code for ATBP mode supports concurrency
by having different process for request and response. It provides the provision to initiate the next
transaction even if the previous transaction is not yet completed, thus there can be various
concurrent transactions. It has to follow the basic TLM2 rule:

-Initiator can not send another request until it has received the END_REQ/BEGIN_RESP phase of previous
transaction.[ref TLM2 User guide sec 7.2.4 b].

However, in the current examples, we do not initiate concurrent transactions, the control from
initiator wrapper reaches to core only after completion of a request.

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 17/21

 Initiator Timer
Beg in_req

TLM_ACCEPTED

t=0

End_Req

TLM_ACCEPTED

t=request accept
 delay

Beg in_Resp

TLM_ACCEPTED

t=response latency

End_Resp

TLM_COMPLETED
t= response accept
delay

 Timer:

 Concurrency in target side is achieved in two ways:
 1. The counting logic(computation part) of the timer runs exclusive and independent of the communication

in process.

 2. In case of ATBP, the request and response are handled by separate process. We have used PEQs(payload
event queues) to store the pending requests and the processes which processes these requests and send
responses to the Initiator. At timer also, following rule is needed:

- Target shall not respond with BEGIN_RESP phase until it has not received the END_RESP
phase/TLM_COMPLETED for the previous transaction[ref TLM2 user guide sec 7.2.4 c]

 4.6. Unit Testing:
STARC suggests that for functional verification of the model, not only integration test environment is created
but unit tests are also created. All the significant features of the Timer8254 have been covered in unit testing.
For unit testing, a common top level module Testbench has been created and then at the testcase level there
is testcase class. The testbench class is common to all the testcases.

Testbench: In the testbench module; initiator and timer are instantiated and then bound together. Apart from
binding, testbench class has some public functions which can be called from outside or derived class for
setting all the latencies, base addresses, clock frequencies and data-granularity(TR/BP) for the initiator and
the timer IP.It has a virtual run() method for which the derived class may provide specific defintion.

Testcase: Each Testcase class is derived from Testbench. Each testcase provides its own definition of the
run method of parent class. In each testcase, the configuration of latencies and clock frequencies can be
different. For each feature of the TimerIP, there is separate testcase and they can be build on both linux and
windows machine.

5. Directory Structure:
The STARC_models directory has several subdirectories, just for the ease of the user.

Dirs:

commonCode: This directory contains the code which is being used by different IPs.

Timer_8254: This directory contains the implementation of the Timer8254, documentation, testcases and
examples.

 /IP: This sub-directory contains the main implementation of timerIP and its counters.

 /common: This subdirectory contains the implementation of the initiator which is main traffic
 generator. The same InitiatorWrapper and core have been used for examples and
 unittests.

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 18/21

 /unit_test: This subdirectory contains exhaustive testcases for various features of the timer8254.

 /examples: This subdirectory contains various examples of timer model. The ReadMe file explains
 more about it. The model has shown the behavior of the model at different abstraction and
 data granularity level.

 / docs: It contains the featurelist which maps with testcases covered for each feature of the timer
 IP.

PIC_8259: This directory contains the implementation of the PIC 8259, documentation, test cases and
examples. It shows the re-usability of code across various IPs.

6.How to build and run:
This package provides some sets of unit tests and examples directory for the user to understand the
implementation and model. Please follow the instructions mentioned below for building them. Note that including
path for Boost headers is only required for PIC_8259 model.

6.1 Windows:

6.1.1 Using Solution file:

1) In each directory of example, there is a directory build-msvc.

2) Open the solution file in MSVC++9.

3) Right-click on the Project, go to properties.Now click C/C++ ->General->Additional Include directories.

4) Now add the SystemC headers(systemc.h) here.

5) Add the path for the tlm headers (tlm.h).

6) Add the path for Boost Headers(function.hpp)[required for PIC_8259 only]

7) Now click linker->general->Additional Library Directories.

8) Add the path for the systemc.lib here.

9) Now build the solution.

10) Run the executable generated in either Debug/release directory as per the configuration set in your
project.

Note: Alternative solution for Step 3,4,5,6,7 is to follow the steps given below:

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 19/21

1) go to tools->options->Projects and Solutions->VC++ Directories.

 2) In the Combobox “Show Directories For”, select Include files and add the path for systemc.h, tlm.h and

 boost header(function.hpp)[boost headers required for PIC_8259 only]

 3) Then again in the same Combobox select “Library files” and add the path for the library “ systemc.lib”.

6.1.2 Using Makefile:

 1) In the directory examples/config_msvc, there is Makefile.config, which is being used by all the examples. For
unit tests the file name is Makefile_msvc.config in the directory unit_test/.

 2)In this file change the following variables as per your systemc environment and installation:

 a) SYSTEMC_HOME

 b) TLM_HOME

 c) BOOST_DIR[required for PIC_8259 only]

 d) FLAGS, add the Visual studio required variables like “Microsoft Visual Studio 9.0\VC\include”, “Microsoft
Visual Studio 9.0\SDK”

e)LDFLAGS change the path for the Visual Studio SDK library (“Microsoft Platform SDK\Lib”)as per your system

3) Now simple go to Programs->Visual C++ 9.0 Express Edition ->Visual Studio tools-> Visual Studio 2008
command prompt.

4) Now go to the particular testcase(for e.g: unit_test/Test1/Test1.1) or build-msvc directory of particular
example(for e.g: examples/Example_nb_000/build-msvc) which you want to build.

5) now simply run the nmake utility

 >nmake

For unit tests, you will have to run

 >nmake /F Makefile_msvc.

It will create all the object files and the required executable.

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 20/21

6.2 Linux:
The procedure for linux is easier one. Follow the steps below:

1) Go to the unit_test/ directory or examples/config-linux/ directory.

2) Edit the Makefile.config present there and change the SYSTEMCDIR and TLMDIR variables as per your
system. Also edit the SYSTEMCLIB.

 3) Now simply go to the particular testcase(for e.g: unit_test/Test5) or build-linux directory of the particular
example(for e.g: examples/Example_nb_000/build-linux) that you want to build.

 Run make command

 >make

 4) You will get the executable in the same directory.

Note: All the testcases can be run in a single go using the perl script “runAll.pl”. This script is valid for both linux
and windows. This script searches for the makefile in all the individual testcase directories and then run it, which
creates the necessary object file and executable. This script run all the testcases and store their results in
runAllStatus. So just by viewing the runAllStatus, one can analyze how many tests have been passed and
how many have failed.It also specifies which testcases have failed and which have passed.

References: 1. OSCI TLM2 User Manual (version JA22)
 [http://www.systemc.org/home]

 2. STARC TLM Guide (second edition)
 [http://www.starc.jp/index-e.html]

 3. Specs of Programmable Interrupt Timer8254
 [www.stanford.edu/class/cs140/projects/pintos/specs/8254.pdf]

 Copyright© 2009 CircuitSutra Technologies Pvt Ltd All Rights Reserved Page 21/21

http://www.stanford.edu/class/cs140/projects/pintos/specs/8254.pdf
http://www.stanford.edu/class/cs140/projects/pintos/specs/8254.pdf
http://www.starc.jp/index-e.html
http://www.systemc.org/home

	1.Purpose
	2.Scope
	3.Timer 8254
	3.1 Block Diagram of Timer
	3.2 Architectural Diagram of Model:

	4.STARC TL Guidelines followed in the model
	4.1 Separation of Communication and Computation:
	4.1.1: Cores:
	4.1.2: Wrappers:

	4.2 Separate class for TLM APIs:
	4.3 Abstraction Levels (Data granularity):
	4.4 Abstraction Levels (Timing):
	4.5 Concurrent Execution of Communication and Computation:
	 4.6. Unit Testing:

	5. Directory Structure:
	6.How to build and run:
	6.1 Windows:
	6.2 Linux:

