
Abstract :

An important  use case for modeling of hardware 
IPs  is  to  use  the  models  to  create  Virtual 
Platforms.  In  a  Virtual  Platform,  models  of 
different  IPs  are stitched  together,  to  be used  to 
simulate  the  functionality  of  entire  SoC  (rather 
than  mere  components  of  a  larger  system). 
Different  IPs  have varied  interface requirements, 
therefore  connecting  software  models  together 
can  become  a  time  consuming  and  error  prone 
task,  especially  if the individual models  use non-
standard  interfaces.  The  OCP-IP  modeling  kit 
provides  a  comprehensive  resource  that 
standardizes  the way all IP that  uses the OCP-IP 
bus  interconnect  is  modeled.  Hence  greatly 
simplifying  the  difficulty  in  building  virtual 
platforms.

This paper presents  work that has used the OCP-
IP  modeling  kit[1],  and  shows  the  benefits  that 
the kit brings. 

I.  Introduction

Many  methodologies  and  techniques  are  being 
developed in the ESL domain, with the objective 
of   enabling  models  re-use,  and  to  facilitate  the 
construction  of  Virtual  Platforms,  providing  the 
functionality  of  an  entire  SoC.  This  complete 
Virtual  Platform,  can  be  run  on  a  host 
machine(PC) to emulate the behavior of different 
modeled architectures.  It can be used to boot the 
complete  software  stack  as  would  the  actual 
physical  platform  and  thus  can  be  used  for 
architecture  exploration,  hardware-software  co-
development and verification.

The  essential  requirements  of  the  individual 
models is to provide fast simulation, and to make 
use  of  standard  interfaces  to  ease  integration:  In 
both  cases  overall  turn  around  time  for 
verification is greatly reduced. Both model speed, 
and,  importantly,  more  integration  times  are 
becoming important factors while designing large 

models.  As  a  complete  SoC  consists  of  many 
hardware  IPs,  a  VirtualPlatform  consists  of 
various models connected together. 

Providing standard and generic external interfaces 
to  the  individual  IP  models  becomes  crucial  to 
their  reusability  and  interoprability.  For  this 
purpose  we  present  work  based  on  the  OCP-IP 
modeling kit[1]  which provides  a set  of rich and 
configurable features for the interfaces of systemC 
modules. The OCP modeling kit is built on top of 
OSCI's  TLM-2.0  technology,  adding  support  for 
the OCP protocol features. This Kit facilitates the 
creation  of   models  at  various  abstraction  levels 
(TL1,  TL2,  TL3,  TL4)  and  supports  all  the  use 
cases  including  verification,  architecture 
exploration  and  software  development.  The  TL1 
Abstraction  corresponds  to  fully  cycle-accurate 
modeling  and  the  TL4  abstraction  level  is 
equivalent  to  the  base protocol  defined  in  OSCI 
TLM2.0 with  loosely  timed  modeling  style.    In 
this project  we have created  a virtual platform at 
the  TL4  abstraction  level,  using  the  TL3/TL4 
APIs provided in the OCP Kit.

For our setup, we have taken the processor model 
from  QEMU,  which  is  a  'C'  based  processor 
emulator. Then SystemC models of IPs like DMA, 
UART  and  InterruptController,  which  form  the 
guts  of both i386 and ARM based  platforms  are 
connected.  These  models  have  been  developed 
and  plugged  into  the  Virtual  Platforms,  which 
includes the QEMU CPU model. The interface of 
these  models  uses  the  features  from  OCP  kit. 
These  models  can  be  accessed  by  applications 
running  on  the  virtual  platform.  Using  this 
approach,  SystemC models  of other  IPs  can also 
be plugged into the VP and can be easily accessed 
by  the  application/device  driver  running  on  the 
system.  This  provides  for  the  use  case  of  early 
software development and analysis.

We  have  also  used  the  GreenSocs  infrastructure 
which  is  an  open  source  infrastructure  for 
developing  standards  based  tool  independent 
SystemC models.

IP-ESC'09 Conference – December 1-3, 2009 1

Creating Virtual Platform using The OCP-IP Modeling kit

Puneet Arora, Ruchir Bharti, CircuitSutra,
Noida, India

Mark Burton, Greensocs
UK



This  virtual  platform will  be donated  to  OCP-IP 
and  will  be  available  for  download  through  the 
OCP-IP website in near future.

This project demonstrates how easy it is to create 
a complete virtual platform of a SoC by using the
standard modeling kits ( OCPIP TL Kit / OSCI 
TLM2.0 ) and the opensource infrastructure
(GreenSocs, QEMU, Openmoko etc.. ). 

This platform can be used by a SoC company as a 
base to create the virtual platform for its own 
SoC. It is becoming a standard practice for the IP 
vendors to provide a TLM model of their IP 
blocks. Our platform can be used by IP vendors to 
try out the models of their IP blocks and run the 
software stack / device driver. They can simply 
create the TLM model of their IP using the OCP-
Kit, plug in their model into this virtual platform, 
and access it through the software running on top 
of the virtual platform.

The benefits of creating the virtual platform using 
SystemC/TLM2.0 have become well known by 
now in the industry. However, many companies 
seem to struggle to benefit from this new 
technology. There is confusion and mistrust, will 
it really work for their SoC, how much 
investment will be required etc. This project is an 
attempt to increase the awareness in the industry, 
and to accelerate the adoption of SystemC, TLM 
and ESL in general. Atleast for creating the initial 
proof of concept, no heavy investment is 
requuired and no commercial ESL tool is required 
to be purchased.

II. Starting Point :  Qemu and Openmoko

As mentioned earlier, Qemu is a 'C' based generic 
and  open-source  processor  emulator  which 
supports  emulating  several  hardware  platforms 
including  x86,  ARM,  SPARC  and MIPS.  It  lets 
you run OSes and programs made for one machine 
on  another  machine.  Before  using  Qemu,  its 
source code needs to be configured(for  a specific 
target  architecture)  and  compiled  on  host 
machine.

For our setup, we have used a particular flavor of 
Qemu  called  qemu-neo1973[3]  which  provides 
ARM  based  hardware  platform  for  mobile 
devices.

Openmoko is a hardware and software project, for 
creating  open  source  mobile  phones.  Openmoko 
software  is  linux  kernel  based  opensource  OS 
which  can  be  run  on  Openmoko  hardware 
platforms.

The qemu-neo1973 flavor,  provides emulation of 
Samsung microprocessor(S3C2410A) [2]which is 
integrated  with  peripherals  like  TouchScreen, 
bluetooth  headset,  I2C devices,  NAND flash etc. 
The  Samsung  microprocessor  consists  of  ARM 
core  and  necessary  peripherals  including  DMA, 
interruptController,  Timer,  RTC,  NandController 
etc.  It  minimizes  overall  system  costs  by 
providing  a  complete  set  of  system  peripherals 
around its ARM920T RISC processor.

III. Integrating SystemC models in Qemu

The  native  'C'  code  of  qemu,  has  its  own 
simulation infrastructure,  which is  invoked  when 
the  qemu  is  launched.  It  connects  the  processor 
core  to  the  model  of  peripherals  through  'C' 
callback functions and accesses the registers of the 
models  through  them.  We  have  replaced  the 
existing  models  of  the  DMA,  UART  and 
InterruptController  IP  with  corresponding 
SystemC models.

To provide access to these SystemC modules  we 
have  used  a  methodology,  “Qemu  InABox”, 
devised  by  GreenSocs  to  connect  the  two 
simulation  environments.  Qemu  contains  an 
endless loop that performs all the steps necessary 
for  a  proper  system  simulation.  In  the  InABox 
approach,  Qemu  code  is  wrapped  in  a SystemC 
wrapper.  So  Qemu  can  be  used  as  a  standard 
TLM2.0  initiator  and  can  be  instantiated  in  any 
TLM2.0  simulation.  This  wrapper  acts  as  a 
SystemC master  to which the modules of IPs can 
connect as slaves[8].

The accesses  to  SystemC devices  is  managed  by 
registering  the  devices  and  capturing  read  and 
writes  to  them  (i.e.  predefined  address  spaces). 
This  link  is  provided  in  a  separate  'C' 
file(sc_link_arm.c).  In this  file  ,  read/write  calls 
for  specific  IPs  are  registered  and  these  get 
forwarded  to  proper  functions  in  Qemu 
SC_wrapper  during  simulation.  These  functions 
then perform the TLM2.0 transaction through the 
socket  to  the  TLM2.0  target  device.  When  the 
SystemC models need to communicate back to the 
qemu  world,  for  example  when  the 
InterruptController  raises  an  interrupt  to  CPU, 
then the  reverse  path is  followed,  i.e.  the  model 
sends the signal to the Qemu SC_wrapper which 
raises  the  appropriate  IRQ(interrupt  request)  line 
of qemu.

Following  diagram  depicts  the  generic 
connectivity through Qemu SystemC wrapper:

IP-ESC'09 Conference – December 1-3, 2009 2



So, sc_link receives  calls from Qemu and breaks 
them into data and address which can then be used 
by SC_master to transmit on its socket connected 
to IPs.
When  the  Qemu  is  running,  applications  can 
access  the  underlying  peripherals  (SystemC 
models) as if they were connected to system bus. 
Here the models need to use a standard interface, 
so that all of them can easily connect to the same 
SC_master.  The  essence  of  using  standard 
interfaces  becomes  more  relevant  when  the 
different  models are being sourced from different 
teams, which would use different interfaces while 
development and  optmizations, leading to a major 
rework activity during integration.

IV. Building Blocks(IPs)

The models  use  standard  modelling  kits(OCP IP 
TLM  and  OSCI  TLM2.0)  and  opensource 
infrastructure  from  GreenSocs,  Qemu  and 
openmoko.  Using  the  approach  described  above 
we  have  connected  SystemC  models  of  DMA, 
UART  and  InterruptController,  and  models  of 
other  IPs  and  peripherals  can  be  similarly 
connected.  The  specifications  for  these  IPs  are 
given in [2].

The  virtual  platform  is  created  at  the  PV 
abstraction level, keeping in mind the use-case of 
embedded  software  development.  The  blocking 
transport  APIs  are  used  for  TLM  transactions, 
through  TL3  level  OCP  sockets.  The  OCP  kit 
provides for maximum interoperability with OSCI 
BaseProtocol.  At  PV  level  the  detailed  timing 
information  and  bus  specific  features  are  not 
modelled. The OCP kit provides support to model 
these  and  also  at  cycle  accurate  level,  but  for 
initial  early  software  development,  this  level  of 
detail is not required.

DMA
The DMA controller can serve up to four channels 
in three different modes. Requests can be initiated 
by hardware as well as software and each channel 
has nine config and status registers.  TLM2.0 base 
protocol  is  used  through  ocp_slave_socket  to 
access  these  registers.  Further,  since  DMA  is 
required  to  read/write  physical  memory  to  serve 
the requests, it acts as an initiator also.

InterruptController
The interrupt  controller  can handle requests  from 
various sources  like DMA, UART, IIC etc and it 
uses two interrutp lines(FIQ and IRQ) to the CPU 
to  serve  multiple  internal  and  external  requests. 
The  various  control  registers  in  the  IC  can  be 
accessed  through  its  ocp_slave_socket  using 
TLM2.0 base protocol.

UART
The  S3C2410A  UART  provides  three 
independent  asynchronous serial devices,  each of 
which  can  operate  in  Interrupt  based  or  DMA 
based  mode.  Since,  by  default,  TLM2.0  Base 
Protocol  provides  for  memory-mapped  bus 
transfers only, so it was extended for non-memory 
mapped  serial  communication  to  model  the  data 
transfer  through UART.  This TLM extension for 
serial protocol is covered in [7].

The  OCP  sockets,  that  are  used  to  access  the 
memory-mapped internal registers of models, also 
provide  memory  management  to  the  user.  The 
memory  pool  is  associated  with  Master  sockets 
and  APIs  are  provided  for  Transaction  memory 
management  and  Data  and  Byte  enable  array 
memory  management.  The  user  can  give  the 
desired allocation scheme to the socket during its 
construction.  For  our  purpose  we  have  used  the 
transaction  memory  management  provided  with 
the socket.

Besides  memory  management,  the  OCP  sockets 
also  provide  run  time  bindability  checks.  These 
checks  are  provided  by  means  of  configurations 
that are attached to them. So if two sockets with 
conflicting configurations are bound to each other 
then  at  run  time  (i.e.  elaboration  phase)  this 
conflict  will  be  reported  to  user  and  has  to  be 
fixed  before  proceeding.  Certain  extensions  are 
defined  in  the  OCP-IP,  and  have  attributes  like 
Phase  association,  Mutability,  Bindabaility   and 
Extension types assocaited with them[1].

All  extensions  have  Bindability  levels(BL) 
associated  with  them,  which  are  defined  in 
conjunction  with  the  role(Master/Slave)  of  the 
socket. BL can be one of : mandatory, optional or 

IP-ESC'09 Conference – December 1-3, 2009 3

Data
SC
IP

QEMU sc_link

Addr

IRQ

init_signal_socket

target_signal_socket ocp_master_socket

ocp_slave_socket

Qemu SC wrapper



rejected.  Mandatory  means  that  the  extension  is 
necessary for the functioning of module, Optional 
means that the module can work correctly with or 
without  the  extension,  and  Rejected  means  that 
the module is unable to handle the extension.

For modelling IPs  (DMA,  IC and UART) at  PV 
level,  the extensions  were  not  required  therefore 
the  BL  of  extensions  was  kept  as  rejected  or 
optional.  When  such  models  are  used  in  other 
environments  then  the  config  of  master_sockets 
on  the  other  end  should  be  set  to  appropriate 
bindability level. Hence if the master is modelled 
at  some  other  abstraction  level  and  uses  some 
extensions   then  the  slave  models  will  give  the 
configs mismatch error at runtime.

The  SC_master  contains  an 
ocp_master_socket_tl3  (multi  socket)  which  is 
connected  to the ocp_slave_socket_tl3  of each of 
the model.  This socket-binding is  used  to  access 
memory mapped registers of the models.

The models  also interact  with  the external  world 
by means  of  interrupt  lines.  For  example,  DMA 
has four  input  DRQ(data  request  lines)  and four 
output  IRQ(interrupt  request  to  CPU  for  bus 
access)  lines.  To  speed  up  the  simulation, 
sc_in/sc_out  ports  are not  used  because they  use 
event based communication mechanism which has 
its  overheads  due  to  context  switching  in  the 
kernel.
Instead, The GreenSocs SignalSockets[4] are used 
to  communicate  the  values  of signals  across  IPs. 
They  communicate  by  setting  appropriate 
extensions  in  the  payload,  and  then  by  simply 
making transport calls on the SignalSockets.
These  SignalSockets  are  TLM-2.0  based  and 
provide many of the same features as the OCP-IP 
kit,  but just  for signals.  They are extremely  easy 
to use,  and cover  all system internal signals.  The 
signal sockets  are not  connected  directly  to  each 
other,instead  they  connect  through  a 
SignalBus[5],  which  acts  as a router  for  signals. 
So even  if  a model  drives  signals  for  more  than 
one  target,  it  need  only  contain  a  single 
init_signal_socket. And similarly  even if a model 
receives  signals  from  more  than  one  sources,  it 
need  only  contain  a  single  target_signal_socket.  
These  are  then  connected  to  the  init  and  target 
sockets  of signal bus. At  the time of elaboration, 
SignalBus  generates  an internal  map  by  reading 
configuration  of the  targets  to  which  it  connects 
and  uses  this  map  at  the  simulation  time  to 
appropriately  route  signals  to  targets.  The 
following diagram shows  the  connectivity  of the 
entire setup:

The memory mapped registers inside the SystemC 
modules  are modelled  using GreenReg[6].  Using 
greenreg  provides  for  a  well  tested  method  of 
handling pre-read,  post-read,  pre-write  and post-
write  functionalities  on  registers.  The  entire 
structure of building models using standard 
components  like GreenReg,  and connecting them 
using  OCP interfaces  and  SignalSockets  is  very 
easy to use and can be easily extended  to plug-in 
SystemC models of more peripherals.

V. Conclusion:

Virtual Platforms at PV abstraction level serve an 
important use case of software modeling i.e. early 
software  development  and  analysis.  This  allows 
software  developers  to  start  developing 
applications  long  before  the  actual  hardware  is 
available in the market.
The SystemC Modules created in this exercise use 
sockets,  memory  management  and  run-time 
bindability checks from the OCP-IP kit. They use 
TL4 abstraction level and can be refined to lower 
levels where other features of OCP-IP kit like pre-
defined  TLM Extensions,   TimingConfigurations 
can be used.
We have demonstrated  the  ease with  which it  is 
now  possible  to  create  a  Virtual  Platform  using 
SystemC  modules  by  using  standard  and  open 
source  infrastructure  already  available.  Usage  of 
standards  like  the  OCP-IP  modeling  kit  makes 
connecting models from different teams very easy 
and  also   greatly  enhance  the  reusability  and 
interoperability of models.

IP-ESC'09 Conference – December 1-3, 2009 4

IP2

IP1

init_signal_socket

target_signal_socket ocp_master_socket

ocp_slave_socket

Qemu
SC_wra

pper

signal_bus



VI. References:

1. OCP kit manual(www.ocpip.org)
2. S3C2410A Users Manual
http://wiki.openmoko.org/wiki/Samsung_S3C241
0
3. Openmoko under qemu
 http://wiki.openmoko.org/wiki/Qemu
4. SignalSockets documentation
http://greensocs.com/en/Projects/GreenSocket/Sig
nalSocket
5.  GreenRouter  documentaion  and  SignalBus 
examples
http://greensocs.com/en/Projects/GreenParts/Gree
nRouter
6. GreenReg documentation and examples
http://greensocs.com
7. TLM extension for Serial Protocol
https://svn.greensocs.com/public/packages/serialso
cket/docs
8.Qemu InABox
http://greensocs.com/en/Projects/QEMUSystemC/
docs/QEMUSystemC/QEMUInABox
9. OSCI TLM2 User Manual(version JA22)

IP-ESC'09 Conference – December 1-3, 2009 5

https://svn.greensocs.com/public/packages/serialsocket/docs
https://svn.greensocs.com/public/packages/serialsocket/docs
http://wiki.openmoko.org/wiki/Qemu
http://wiki.openmoko.org/wiki/Samsung_S3C2410:w
http://wiki.openmoko.org/wiki/Samsung_S3C2410:w

